本發(fā)明涉及圖像處理領(lǐng)域,具體地說,特別涉及一種湍流圖像去噪方法。
背景技術(shù):
近年來,國(guó)內(nèi)外學(xué)者提出了許多受大氣湍流影響的空中目標(biāo)去噪算法,提出了一種基于小波閾值湍流圖像去噪方法,該方法基于通用閾值收縮法,實(shí)現(xiàn)湍流圖像去噪,該方法的缺點(diǎn)是邊緣過于平滑,算法的收斂速度慢;提出了一種自適應(yīng)領(lǐng)域的閾值去噪方法(denoisingwaveletthresholdbasedonnabayesshrinkmethod,dwt-nabayesshrink),該方法基于小波系數(shù)特征并結(jié)合廣義高斯模型,實(shí)現(xiàn)自適應(yīng)鄰域的閾值去噪,該方法的優(yōu)點(diǎn)是能夠保留部分圖像細(xì)節(jié),但算法計(jì)算量大,收斂慢;提出了基于離散小波變換的非線性圖像去噪方法(undecimateddiscretewavelettransform,udwt),該方法采用非抽樣、位移不變的非正交基小波變換,不同于donoho等提出的正交小波變換,該方法的優(yōu)點(diǎn)是明顯降低圖像噪聲,很好地保護(hù)圖像邊緣信息,但圖像細(xì)節(jié)信息呈現(xiàn)度不夠。
受成像系統(tǒng)結(jié)構(gòu)及大氣湍流等因素的影響,觀測(cè)圖像中含有大量的噪聲,將導(dǎo)致目標(biāo)圖像畸變十分嚴(yán)重,有礙于對(duì)空中目標(biāo)的定位、探測(cè)與跟蹤。
技術(shù)實(shí)現(xiàn)要素:
為了解決現(xiàn)有技術(shù)的問題,本發(fā)明實(shí)施例提供了一種湍流圖像去噪方法。所述技術(shù)方案如下:
一方面,提供了一種湍流圖像去噪方法,包括以下步驟:
對(duì)含噪湍流圖像進(jìn)行單層二維離散小波變換,獲得重構(gòu)的低頻、高頻系數(shù);
提取所述重構(gòu)的高頻系數(shù),并對(duì)所述含噪湍流圖像作快速離散curvelet變換;
根據(jù)貝葉斯準(zhǔn)則估計(jì)閾值t,改進(jìn)閾值的自適應(yīng)選取方法,獲得最優(yōu)閾值,得到去噪的湍流圖像。
可選地,所述對(duì)含噪湍流圖像進(jìn)行單層二維離散小波變換具體為:
采用mallat算法對(duì)湍流退化圖像做單層2-d離散小波變換,將其分解為4個(gè)子帶,提取分解后的低頻和高頻系數(shù),從系數(shù)中重構(gòu)低頻、高頻系數(shù)。
可選地,所述提取所述重構(gòu)的高頻系數(shù),并對(duì)所述含噪湍流圖像作快速離散curvelet變換具體為:
將重構(gòu)的高頻系數(shù)作為輸入,進(jìn)行基于wrapping的快速離散wdct變換,得到離散的curvelet系數(shù)集合cd(i,j,k)。
可選地,所述將重構(gòu)的高頻系數(shù)作為輸入,進(jìn)行基于wrapping的快速離散wdct變換,得到離散的curvelet系數(shù)集合cd(i,j,k)的步驟具體如下:
1)對(duì)笛卡爾坐標(biāo)系下的一幅圖像f[t1,t2]進(jìn)行2-dfft變換,得到2-d頻域表示:
2)對(duì)每一對(duì)角度、尺度(i,j),重采樣
其中,pj為矩形,長(zhǎng)度為l1,j,寬度為l2,j;;
3)將采樣得到的
4)圍繞原點(diǎn)wrap得
其中,
5)對(duì)每個(gè)
可選地,所述根據(jù)貝葉斯準(zhǔn)則估計(jì)閾值t,改進(jìn)閾值的自適應(yīng)選取方法,獲得最優(yōu)閾值,得到去噪圖像的步驟具體如下:
估計(jì)子帶cd(i,j,k)的最優(yōu)閾值ti,j;
根據(jù)軟閾值函數(shù)修整子帶系數(shù)cd(i,j,k),得到新的高頻系數(shù);
將提取分解后得到的低頻系數(shù)和所述新的高頻系數(shù)進(jìn)行wdct逆變換,得到去噪圖像。
可選地,所述估計(jì)子帶cd(i,j,k)的最優(yōu)閾值ti,j具體為:
根據(jù)式
可選地,獲取所述式
使用軟閾值函數(shù),軟閾值函數(shù)δt(x)定義為
式中,t為閾值;
基于貝葉斯估計(jì)準(zhǔn)則獲得閾值,并與wdct分解的子帶建立關(guān)聯(lián);改進(jìn)chang提出的閾值選取方法,引入尺度參數(shù)ξ,則閾值的定義如下
式中,i和j分別表示子帶分解的水平方向和垂直方向,
式中,q為圖像信號(hào)分解層數(shù),n是系數(shù)cd(i,j,k)的維度;
對(duì)式g(x,y)=f(x,y)+n(x,y)進(jìn)行wdct變換,得到
ci,j=xi,j+vi,j(18)
式中,ci,j表示對(duì)觀測(cè)圖像g(x,y)變換后的子帶系數(shù),xi,j表示對(duì)原圖像f(x,y)變換后的子帶系數(shù),vi,j表示對(duì)噪聲n(x,y)變換后的子帶系數(shù);
因?yàn)樵肼昻(x,y)和原圖像f(x,y)相互獨(dú)立,根據(jù)式(18)有:
式中,
式中,median(|ci,j|)表示給定數(shù)值|ci,j|的中值函數(shù),hh1表示第一個(gè)子帶;
根據(jù)中心極限定理,curvelet變換后的子帶系數(shù)ci,j服從廣義高斯分布,其方差
根據(jù)公式(19)和公式(21),得到
修改式(16),得到wdct自適應(yīng)去噪最優(yōu)閾值估計(jì)為
在wdct變換系數(shù)不同分解尺度j和不同方向i上選擇自適應(yīng)最優(yōu)閾值
本發(fā)明實(shí)施例提供的技術(shù)方案帶來的有益效果是:
本發(fā)明通過提供了一種湍流圖像去噪方法,與dwt-nabayesshrink去噪算法和udwt去噪算法進(jìn)行比較,通過本方法去噪后的圖像的psnr值提高和mse值明顯降低,并取得良好的視覺效果。
本發(fā)明能夠很好地保護(hù)圖像細(xì)節(jié)信息,并且抑制了邊界偽影,視覺效果明顯提高。同時(shí)本發(fā)明取得了較高的峰值信噪比、較低的均方誤差,有效地去除湍流退化圖像的噪聲。
附圖說明
為了更清楚地說明本發(fā)明實(shí)施例中的技術(shù)方案,下面將對(duì)實(shí)施例描述中所需要使用的附圖作簡(jiǎn)單地介紹,顯而易見地,下面描述中的附圖僅僅是本發(fā)明的一些實(shí)施例,對(duì)于本領(lǐng)域普通技術(shù)人員來講,在不付出創(chuàng)造性勞動(dòng)的前提下,還可以根據(jù)這些附圖獲得其他的附圖。
圖1是本發(fā)明實(shí)施例的一種湍流圖像去噪方法流程圖。
具體實(shí)施方式
為使本發(fā)明的目的、技術(shù)方案和優(yōu)點(diǎn)更加清楚,下面將結(jié)合附圖對(duì)本發(fā)明實(shí)施方式作進(jìn)一步地詳細(xì)描述。
本發(fā)明提供了一種湍流圖像去噪方法,參見圖1,包括以下步驟:
s100:對(duì)含噪湍流圖像進(jìn)行單層二維離散小波變換,獲得重構(gòu)的低頻、高頻系數(shù);
具體地,所述對(duì)含噪湍流圖像進(jìn)行單層二維離散小波變換,獲得重構(gòu)的低頻、高頻系數(shù)具體為:
采用mallat算法對(duì)湍流退化圖像做單層2-d離散小波變換,將其分解為4個(gè)子帶,提取分解后的低頻和高頻系數(shù),從系數(shù)中重構(gòu)低頻、高頻系數(shù)。
s200:提取所述重構(gòu)的高頻系數(shù),并對(duì)所述含噪湍流圖像作快速離散curvelet變換;;
具體地,所述提取所述重構(gòu)的高頻系數(shù),并對(duì)所述含噪湍流圖像作快速離散curvelet變換具體為:
將重構(gòu)的高頻系數(shù)作為輸入,進(jìn)行基于wrapping的快速離散wdct變換,得到離散的curvelet系數(shù)集合cd(i,j,k)。
s300:根據(jù)貝葉斯準(zhǔn)則估計(jì)閾值t,改進(jìn)閾值的自適應(yīng)選取方法,獲得最優(yōu)閾值,得到去噪的湍流圖像。
具體地,所述根據(jù)貝葉斯準(zhǔn)則估計(jì)閾值t,改進(jìn)閾值的自適應(yīng)選取方法,獲得最優(yōu)閾值,得到去噪圖像的步驟具體如下:
估計(jì)子帶cd(i,j,k)的最優(yōu)閾值ti,j;
根據(jù)軟閾值函數(shù)修整子帶系數(shù)cd(i,j,k),得到新的高頻系數(shù);
將提取分解后得到的低頻系數(shù)和所述新的高頻系數(shù)進(jìn)行wdct逆變換,得到去噪圖像。
本實(shí)施例中,本發(fā)明的基本思路是:首先采用二維離散小波變換(2-ddiscretewavelettransform,2-ddwt)方法將湍流退化圖像分解為4個(gè)子帶,然后對(duì)高頻系數(shù)進(jìn)行基于wrapping的快速離散curvelet變換,再基于貝葉斯估計(jì)準(zhǔn)則改進(jìn)閾值選取方法,以修整curvelet子帶系數(shù),實(shí)現(xiàn)湍流退化圖像的去噪目的。
具體地,本發(fā)明一種湍流圖像去噪方法還提供了wdct的原理,具體如下:
湍流圖像的退化模型為:
g(x,y)=f(x,y)+n(x,y)(1)
其中,g(x,y)是觀測(cè)的湍流退化圖像,f(x,y)是原圖像,h(x,y)是點(diǎn)擴(kuò)散函數(shù),n(x,y)為高斯噪聲,圖像的空間坐標(biāo)(x,y)∈ω,ω是圖像域。
對(duì)于給定的圖像函數(shù)f(x)∈l2(r2),連續(xù)curvelet變換采用基函數(shù)與圖像信號(hào)f(x)的內(nèi)積形式實(shí)現(xiàn)圖像信號(hào)的稀疏表示,則圖像f的curvelet變換表示為
式中,
本文采用基于wrapping算法的快速離散curvelet變換,因?yàn)檫@是目前所能實(shí)現(xiàn)的最快的離散curvelet變換[15]。在笛卡爾坐標(biāo)系,設(shè)f[t1,t2](0≤t1,t2<n)表示一幅圖像,對(duì)公式(3)做基于wdct變換,得到子帶系數(shù)cd(i,j,k)
式中,上標(biāo)d表示離散,每個(gè)
式中,φ是一維低通窗口的積,其計(jì)算公式為:
φj(ω1,ω2)=φ(2-jω1)φ(2-jω2)(6)
其中,函數(shù)滿足0≤φ≤1,在[-0.5,0.5]區(qū)間,可能等于1,在-[2,2]之外消失,由此可得
在笛卡爾坐標(biāo)系,角度窗口vj為
因此,我們使用
引入一組等間隔斜率
其中,剪切矩陣為
具體地,本實(shí)施例中,基于wrapping算法的wdct變換具體實(shí)現(xiàn)步驟如算法1。
算法1,基于wrapping算法的wdct變換步驟如下:
step1:對(duì)笛卡爾坐標(biāo)系下的一幅圖像f[t1,t2]進(jìn)行2-dfft變換,得到2-d頻域表示
step2:對(duì)每一對(duì)角度、尺度(i,j),重采樣
其中,pj為矩形,長(zhǎng)度為l1,j,寬度為l2,j。
step3:將采樣得到的
step4:圍繞原點(diǎn)wrap得
其中,
step5:對(duì)每個(gè)
本實(shí)施例中,還提供了閾值計(jì)算的方法,在wdct算法中,選擇閾值函數(shù)和閾值是至關(guān)重要的。常用的閾值處理函數(shù)有硬閾值函數(shù)和軟閾值函數(shù),本實(shí)施例中使用軟閾值函數(shù)。軟閾值函數(shù)δt(x)定義為
式中,t為閾值。
本發(fā)明基于貝葉斯估計(jì)準(zhǔn)則獲得閾值,并與wdct分解的子帶建立關(guān)聯(lián)。改進(jìn)chang提出的閾值選取方法,引入尺度參數(shù)ξ,則閾值的定義如下
式中,i和j分別表示子帶分解的水平方向和垂直方向,
式中,q為圖像信號(hào)分解層數(shù),n是系數(shù)cd(i,j,k)的維度。
對(duì)式(1)進(jìn)行wdct變換,得到
ci,j=xi,j+vi,j(18)
式中,ci,j表示對(duì)觀測(cè)圖像g(x,y)變換后的子帶系數(shù),xi,j表示對(duì)原圖像f(x,y)變換后的子帶系數(shù),vi,j表示對(duì)噪聲n(x,y)變換后的子帶系數(shù)。
因?yàn)樵肼昻(x,y)和原圖像f(x,y)相互獨(dú)立,根據(jù)式(18)有:
式中,
式中,median(|ci,j|)表示給定數(shù)值|ci,j|的中值函數(shù),hh1表示第一個(gè)子帶。
根據(jù)中心極限定理,curvelet變換后的子帶系數(shù)ci,j服從廣義高斯分布,其方差
根據(jù)公式(19)和公式(21),得到
修改式(16),得到wdct自適應(yīng)去噪最優(yōu)閾值估計(jì)為
在wdct變換系數(shù)不同分解尺度j和不同方向i上選擇自適應(yīng)最優(yōu)閾值
具體地,本實(shí)施例中,提出的湍流圖像去噪算法實(shí)現(xiàn)的具體步驟如算法2,即:
step1:采用mallat算法對(duì)湍流退化圖像做單層2-d離散小波變換,將其分解為4個(gè)子帶,提取分解后的低頻和高頻系數(shù),從系數(shù)中重構(gòu)低頻、高頻系數(shù);
step2:根據(jù)實(shí)施例中的算法1,將重構(gòu)的高頻系數(shù)作為輸入,進(jìn)行基于wrapping的快速離散wdct變換,得到curvelet系數(shù)cd(i,j,k);
step3:根據(jù)式(23)估計(jì)子帶cd(i,j,k)的最優(yōu)閾值ti,j;
step4:根據(jù)軟閾值函數(shù)修整子帶系數(shù)cd(i,j,k),得到新的高頻系數(shù);
step5:將step1得到的低頻系數(shù)和step4得到的高頻系數(shù)進(jìn)行wdct逆變換,得到去噪圖像。
本發(fā)明實(shí)施例提供的技術(shù)方案帶來的有益效果是:
本發(fā)明通過提供了一種湍流圖像去噪方法,與dwt-nabayesshrink去噪算法和udwt去噪算法進(jìn)行比較,通過本方法去噪后的圖像的psnr值提高和mse值明顯降低,并取得良好的視覺效果。
本發(fā)明能夠很好地保護(hù)圖像細(xì)節(jié)信息,并且抑制了邊界偽影,視覺效果明顯提高。同時(shí)本發(fā)明取得了較高的峰值信噪比、較低的均方誤差,有效地去除湍流退化圖像的噪聲。
以上僅為本發(fā)明的較佳實(shí)施例,并不用以限制本發(fā)明,凡在本發(fā)明的精神和原則之內(nèi),所作的任何修改、等同替換、改進(jìn)等,均應(yīng)包含在本發(fā)明的保護(hù)范圍之內(nèi)。